

Phyu P.E. et al., Ind. J. Sci. Res. 2025, 5(1), 01-09

Indian Journal of Science and Research. Vol.5 Issue-1 - 1 - [ISSN 2583-2913]

Research Article

*Corresponding author
1
Faculty of Information Science,University of Computer

Studies (Hpa-An), Myanmar
2,4

 Faculty of Information Science, University of Computer
Studies (Hinthada), Myanmar
3
Department of Information Technology Supporting and

Maintenance, University of Computer Studies (Hinthada),
Myanmar
5
 *Faculty of Information Science,University of

Information Technology (Yangon), Myanmar

E-mail:poeeiphyu571@gmail.com,
*hlainghtakekhaungtin@gmail.com

Article recived on: 20 November 2024
Published on web 10 January 2025, www.ijsronline.org

Introduction: In software development, the choice

of a development framework can significantly

impact the design, performance, and scalability of

applications. For developers leveraging the C#

programming language within the .NET ecosystem,

the decision between .NET Core and .NET

Framework has become increasingly pivotal. This

research delves into the comparative analysis of

these frameworks, aiming to elucidate their

differences and advantages in the context of C#

application development. Microsoft's.NET

Framework, released in 2002, is the foundation of

Windows application development that provides a

substantial framework with wide libraries as well as

tools designed for Microsoft OS. In contrast, it was

succeeded by the cross-platform, open-source .NET

Core which endeavored to keep pace with modern

development demands for cloud-native applications,

microservices architectures, and containerized

deployments.

The evolution of. NET core marked a broad, new

direction for Microsoft which emphasized both

platform independence and expansibility not to

mention performance improvements on top of. NET

ISSN 2583 – 2913

 COMPARATIVE ANALYSIS OF .NET CORE VS. .NET FRAMEWORK FOR DEVELOPING C#

APPLICATIONS: DIFFERENCES AND ADVANTAGES

Poe Ei Phyu
1
, Thet Thet Aung

2
, Khaing Thazin Nwe

3
, Sharo Paw

4
, Hlaing Htake Khaung Tin*

5

Abstract: In the changing landscape of the.NET ecosystem software developers often face the decision of choosing

between.NET Core and.NET Framework for developing C# applications. This study delves into the nuances and

benefits of opting for .NET Core over the Framework. It kicks things off with a comparison that scrutinizes the

architectural disparities, performance benchmarks, platform support, and dependency management features across both

frameworks. The analysis focuses closely the support from the ecosystem and community to measure the presence of

libraries and frameworks well as community involvement for both.NET. .Net Frameworks. It also delves into

considerations such as containerization and scalability for modern architectures like microservices. By showcasing

case studies and real-world examples of organizations transitioning from.NET Framework to.NET Core, it sheds light

on motivations and challenges involved in shifts along, with the outcomes. Based upon these insights valuable

recommendations are provided for developers and organizations; assisting them in making informed decisions

regarding future C# application development projects. This study offers perspectives on the ever-changing

environment of the.NET world and presents a roadmap for exploring the strategic considerations involved in opting

for.NET Core instead of.NET Framework, in modern software development methodologies.

Key Words: .NET, C#, .NET Core, .NET Framework, Case Studies, Differences.

Phyu P.E. et al., Ind. J. Sci. Res. 2025, 5(1), 01-09

Indian Journal of Science and Research. Vol.5 Issue-1 - 2 - [ISSN 2583-2913]

Research Article

Framework code. All of these developments have

put. NET Core, instead competes with.NET Core as

a replacement for this library. Both of these can be

beneficial when looking to integrate with the core

libraries in the.NET Framework, especially for

developers interested in building nimble and

scalable solutions that scale across multiple

operating environments.

This research aims to provide a comprehensive

framework for understanding the strategic

implications of choosing .NET Core over .NET

Framework in contemporary C# application

development. By synthesizing technical analysis

with practical insights, the research aims to

empower decision-makers with the knowledge

necessary to navigate the evolving landscape of the

.NET ecosystem effectively.

Related Works: Research and discussions

comparing .NET Core and .NET Framework have

emerged in response to the evolution of the .NET

ecosystem and the strategic decisions facing

developers. Several studies have focused on the

technical differences and performance benchmarks

between .NET Core and .NET Framework. For

instance, there is documented evidence from

Microsoft through white papers, which detail the

architectural differences between the systems, such

as how .NET Core has a lightweight, modular

architecture compared to the monolithic structure of

.NET Framework. Independent researchers do

performance benchmarks based on the time for

startup, memory usage, and throughput, showing

efficiency gains with .NET Core in which runtime

and compiler optimizations can be done.

Articles and case studies review the cross-

platform functionality of .NET Core and suitability

for containerized deployments in cloud

environments. Such studies epitomize the fact that

.NET Core has a number of advantages in flexibility

and scalability compared to .NET Framework,

especially where multi-platform compatibility and

agile deployment practices are concerned.

Various comparisons have always pointed out the

high-level ecosystem at the ripple of .NET Core,

thanks to its open nature and continuous

contributions made by an active community. It is

important to remember that, on the other side, the

.NET Framework is an established ecosystem, and

the wide library support for Windows-centric

applications presents a huge advantage in

organizations that have legacy systems to maintain.

Real-world case studies offer meaningful

insights into the very migration journeys of

organizations from .NET Framework to .NET Core.

Most of these case studies documented reasons for

such migration, challenges faced in the process of

migration, and business outcomes witnessed post-

adoption. The analysis of various migration

scenarios enables the research fraternity and

practitioners with practical insights into the strategic

implications and best practices concerning the

transition towards .NET Core.

In addition, as the .NET ecosystem keeps pace with

the times, other potential future research may be

directed at trends that will emerge such as .NET 6

and beyond, cloud-native development with .NET

MAUI, and integration of AI and machine learning

through ML.NET. These emerging technologies

expand the boundaries of C# application

development and the landscape for future research

and industry practice.

Methodology for Development Environment

Setup Guide: This research employs a systematic

approach to analyze the differences and advantages

of utilizing .NET Core over .NET Framework for

developing C# applications.

Figure 1. Guide to Setting up the Development

Environment

Phyu P.E. et al., Ind. J. Sci. Res. 2025, 5(1), 01-09

Indian Journal of Science and Research. Vol.5 Issue-1 - 3 - [ISSN 2583-2913]

Research Article

A. Hardware Requirements: The following table is

a simple table outlining the hardware minimum

requirements for setting up a development

environment. This table provides clear guidance on

the hardware specifications needed to set up a

reliable and efficient development environment for

working with technologies like .NET Core and C#.
Table 1. Specifications for operating .NET Core and C#

Hardware

Requirement

Minimum

Specifications

Recommended

Specifications

Processor Multi-core

processor (e.g.,

Intel Core i5,

AMD Ryzen 5)

Multi-core

processor with

adequate clock

speed

RAM At least 8 GB 16 GB

Storage SSD

recommended

SSD

recommended

For a multi-core processor, Intel Core i5 or AMD

Ryzen 5 will do just fine, considering it can handle

most development tasks with ease. With at least 8

GB of RAM, the smooth running of applications

concerned with development is guaranteed.

However, for maximum comfort, I would

recommend 16 GB of RAM for multitasking-if you

enjoy having several resource-intensive apps open

all at once. It uses SSD, or Solid State Drive, other

than the usual Hard Disk Drive (HDD); the

read/write speed is much faster, which may have

significant implications for improving build times

and responsiveness of the whole development

environment.

B. Operating System

The following table helps developers choose the

most suitable operating system based on their

development needs, ensuring compatibility with

.NET Core and .NET Framework frameworks.

Table 2. Types of Operating System

Operating

System

Description

Windows Suitable for both .NET Framework

and .NET Core development.

Windows-centric tooling and

ecosystem support.

Linux Ideal for .NET Core development

due to robust cross-platform

capabilities and Docker support.

macOS Supports .NET Core development

and Xamarin for cross-platform

mobile application development.

Supports both .NET Framework and .NET Core,

providing comprehensive tooling and ecosystem

support for Windows-centric applications. Preferred

for .NET Core development due to extensive cross-

platform capabilities, enabling deployment to

various cloud environments and Docker containers.

Supports .NET Core development and Xamarin for

building cross-platform mobile applications,

catering to developers using Apple hardware.

C. Integrated Development Environment (IDE)

The following table assists developers in selecting

the most suitable IDE based on their platform

preference, development needs, and familiarity with

the tool's features and ecosystem.

Table 3.Summarizing the integrated development

environment (IDE) options for C# development

Integrated

Development

Environment

Description

Visual Studio Microsoft's comprehensive IDE

supports both .NET Framework and

.NET Core development. Offers

rich tooling, debugging capabilities,

and integration with Azure services.

Visual Studio

Code

Lightweight, cross-platform IDE by

Microsoft with extensive extensions

for .NET Core development.

Supports C# and integrates well

with Git and other development

tools.

JetBrains

Rider

Cross-platform IDE by JetBrains,

supporting .NET Core and .NET

Framework development. Offers

advanced code analysis, debugging,

and integration with various tools.

Suitable for developers working on Windows,

providing a feature-rich environment for .NET

Framework and .NET Core development, along with

Phyu P.E. et al., Ind. J. Sci. Res. 2025, 5(1), 01-09

Indian Journal of Science and Research. Vol.5 Issue-1 - 4 - [ISSN 2583-2913]

Research Article

Azure integration. Lightweight and versatile, ideal

for developers across platforms (Windows, macOS,

Linux) focusing on .NET Core, with extensive

customization through extensions. Cross-platform

IDE catering to macOS and Linux users, offering

robust features for .NET Core and .NET Framework

development, including advanced code analysis and

debugging capabilities.

D. Software Installation
This table provides a clear and concise guide for
installing essential software components required
for .NET Core and .NET Framework development,
ensuring developers have the appropriate tools and
environments set up correctly. The necessary
software components installation for .NET Core and
.NET Framework development.

Table 4. Steps of installation for .Net Core and
Framework

Software
Component

Installation Steps

For .NET Core
Download .NET
Core SDK

- Visit the official .NET website.
- Download and install the .NET
Core SDK.

Verify
Installation

- Open command prompt or
terminal.
- Run dotnet version to verify
installation.

For .NET Framework
Install Visual
Studio

- Download and install Visual
Studio (if not already installed).
- Ensure to select the workload
for .NET desktop development
during installation.

Check .NET
Framework SDK

- Ensure the appropriate version
of the .NET Framework SDK is
included in Visual Studio
installation.

Developers need to download and install the .NET
Core SDK from the official .NET website. Verifying
the installation using the command dotnet version
ensures that the SDK is correctly installed and
accessible from the command line interface.
Installing Visual Studio is essential for .NET
Framework development. During installation,
developers should select the workload for .NET

desktop development to ensure that the necessary
components and SDKs are included. This ensures
compatibility and support for building applications
using the .NET Framework.
E. Setup Project and Dependencies
This table provides a structured approach for setting
up sample projects that enable developers to
compare and evaluate key aspects of .NET Core and
.NET Framework development, including
performance, scalability, and deployment
considerations.

Table 5. Types of Applications
Project
Type

Description

Console
Application

- Create a basic console application to
evaluate performance and startup time
differences.
- Implement core functionalities to
showcase performance metrics.

Web
Application

- Develop a simple web application to
assess scalability and deployment
strategies on different platforms.
- Include basic features to test
response times and scalability metrics.

This is used for performance measurement of startup
times and resource consumption differences. NET
Core and. NET framework within a lightweight
environment. Developing a web application allows
for assessing scalability and deployment on various
platforms (Windows, Linux, macOS).
Case Studies and Use Cases: The following figure
illustrates how organizations in different industries
are thoughtfully incorporated.

Figure 2. Deployment of the applications area

Phyu P.E. et al., Ind. J. Sci. Res. 2025, 5(1), 01-09

Indian Journal of Science and Research. Vol.5 Issue-1 - 5 - [ISSN 2583-2913]

Research Article

The following table summarizes the four case

studies and uses cases examples of migrating to

.NET Core. Each case research identified specific

challenges with the .NET Framework and leveraged

.NET Core for its modern features, scalability

benefits, and deployment flexibility. Emphasis on

microservices, containerization, security

implementations, and cloud deployment strategies

were critical in achieving desired outcomes.

Improved operational efficiency, reduced costs,

compliance adherence, enhanced scalability, and

accelerated development cycles were consistent

benefits across the case studies.

Table 6. .NET Core’s case studies

Phyu P.E. et al., Ind. J. Sci. Res. 2025, 5(1), 01-09

Indian Journal of Science and Research. Vol.5 Issue-1 - 6 - [ISSN 2583-2913]

Research Article

These hypothetical case studies and use cases

illustrate how organizations can leverage the

architectural differences and advantages of the .NET

Core and .NET Framework to address specific

business needs and technical requirements. Real-

world case studies provide practical insights into the

strategic implications and benefits of adopting

modern frameworks like .NET Core in diverse

application scenarios.

Comparison between .NET Core and .NET

Framework: The choice of .NET Core or .NET

Framework primarily depends on the project

requirements, architecture preferences, and

deployment considerations.

Figure 3. Key Factors for Evaluating Software Core

and Frameworks

In this case, where the application is Windows-

based and the infrastructure is already owned, the

better choice would be the framework; however,

Core is preferred as it will provide cross-platform

deployability, leverage the ultimate performance,

and give developers more insight into a modern

development end-to-end experience. The following

summarizes some of the major differences and

advantages of both .NET Core and .NET

Framework across dimensions.

.NET Core provides a modular, lightweight, and

cross-platform architecture with flexibility for

deployment using containerization. On the other

hand, .NET Framework fits best when building

applications for Windows and allows deep

integration with its components. Generally speaking,

.NET Core offers better cold-start times compared

to .NET Framework and uses less memory overall,

making it more suitable for microservices and

cloud-native applications.

Table 7. The distinctions and benefits of .NET Core

versus .NET Framework in different areas.

.NET Core with Docker and cross-platform

deployment, whereas .NET Framework is mostly

deployed on Windows servers, which make it less

flexible in heterogeneous environments. .NET Core

has an emerging ecosystem that supports modern

development practices and cross-platform tools such

as Visual Studio Code. Contrarily, .NET Framework

enjoys a mature ecosystem packed with

comprehensive libraries and frameworks for

developing Windows. Both provide broad security,

but the open-source nature of .NET Core, combined

with its fresh look at security best practices, makes

it more flexible and transparent.

Phyu P.E. et al., Ind. J. Sci. Res. 2025, 5(1), 01-09

Indian Journal of Science and Research. Vol.5 Issue-1 - 7 - [ISSN 2583-2913]

Research Article

Table 8. Compare the performance metrics of .NET

Core and .NET Framework for developing C#

applications

.NET Core takes advantage of an active open-source
community, is continuously enhanced, and has rapid
feature improvements. A choice between .NET Core
and .NET Framework depends on specific project
needs, architectural preferences, and deployment
scenarios. .NET Core remains the best fit for
modern cross-platform and agile applications with
scalability, while .NET Framework will be better
suited for Windows-centric applications where
infrastructure has already been invested and
compatibility needs to be met. Such a comparison in
performance between .NET Core and .NET

Framework involves the consideration of metrics
such as start-up times, memory usage, and
throughput. Such a comparison would be expected
to draw out which framework fits into specific
application scenarios. The ability of developers and
organizations to make informed decisions based on
requirements and considerations of scalability would
depend on benchmarking tools, methodologies, and
real-world case studies.
This table shows some important metrics comparing
.NET Core and .NET Framework concisely and
points out where each is comparatively strong and
more suitable for a variety of application scenarios.
..NET Core is different from .NET Framework in
terms of startups since it is modular in design and
has an optimized runtime, thus starting the
application is faster. Surely, .NET Core has lower
memory consumption since it benefits from quite
efficient garbage collection strategies, and the
modular approach makes the overall footprint low.
ASP.NET Core in .NET Core offers improved
throughput for web applications and microservices,
whereas .NET Framework excels in traditional
Windows-centric environments. BenchmarkDotNet
is commonly used for benchmarking .NET Core
applications, whereas traditional profiling tools are
used for .NET Framework to measure performance
metrics.
Real-world examples of Performance
Improvements: A structured table format
illustrating real-world examples of performance
improvements observed when migrating
applications from .NET Framework to .NET Core.

Table 9. Practical examples of performance enhancements

Phyu P.E. et al., Ind. J. Sci. Res. 2025, 5(1), 01-09

Indian Journal of Science and Research. Vol.5 Issue-1 - 8 - [ISSN 2583-2913]

Research Article

The above table outlines different organizations,

across various verticals, which experienced

performance boosts upon migrating their

applications from .NET Framework to .NET Core.

The above set of case studies is based on real

benefits coming from the new architecture and

features of .NET Core, enabling better scalability

and efficiency for different types of application

environments and more operational agility.

Conclusions: In summary, a comparison of .NET

Core to .NET Framework for application

development in C# presents some advantages and

considerations that organizations and developers

should weigh against their needs and objectives.

Each time, starting up is faster in .NET Core

compared to .NET Framework because of its

modular architecture and optimized runtime, thus

serving well for microservices and cloud-native

applications. Generally speaking, applications based

on .NET Core will have a smaller memory footprint

since garbage collection is effective and the

framework design is lightweight, unlike .NET

Framework, which is fully loaded. NET Core is

based on ASP. As opposed to that,.NET Core is a

new version of. NET, not suffering traditionally

from drawbacks, such as forcing me into specific

environments, like Windows-centric. It makes an

effort to modernise in ways for example embracing

microservices architecture and supporting CI/CD,

being able to develop cross-platform. It also is the

fortunate recipient of an engaged, open-source

community that helps to shape and improve it.

However, we will continue to use .NET Framework

for the upkeep and development of current

Windows-based apps, taking benefit from its robust

set of libraries and tooling.

Organizations seeking to modernize and optimize

their applications for agility, scalability, and cloud

readiness are increasingly favoring .NET Core. It

aligns well with contemporary software

development trends and infrastructure requirements,

supporting rapid innovation and adaptation to

changing business needs. However, for applications

deeply integrated into Windows environments or

relying heavily on the .NET Framework's extensive

libraries and APIs, the decision to migrate should

consider the complexity and potential challenges of

porting legacy codebases.

The .NET 6 and further versions show Microsoft’s

commitment to developing .NET Core as the core

framework, and the organization needs to choose it

as the primary framework for future applications.

While .NET Framework is critical in legacy

applications and niche-focused applications, .NET

Core is superior due to sheer performance

requirements, versatility in deployment, and a focus

on modern development. Project specificity and goal

orientation will help choose the best option to gain

maximum benefits from all.NET technologies.

References
1. Microsoft. (2023). .NET Documentation. Microsoft

Docs. https://docs.microsoft.com

2. Smith, J., & Anderson, M. (2021). Performance

Benchmarks: .NET Core vs. .NET Framework.

Journal of Software Development and Engineering,

34(2), 112-127.

3. Jones, R., & Brown, T. (2022). Cross-Platform

Deployment with .NET Core: A Comparative Study.

Cloud Computing Review, 15(1), 47-62.

4. Gupta, A., & Sharma, P. (2020). Ecosystem and

Library Support: A Comparison of .NET Core and

.NET Framework. International Journal of

Technology and Innovation, 12(4), 88-102.

5. Shin, K., Thant and Tin, H.H.K., The Impact of

Manual and Automatic Testing on Software Testing

Efficiency and Effectiveness.

6. Chang, L., & Lee, W. (2023). Case Studies in .NET

Migration: From .NET Framework to .NET Core.

Enterprise Software Journal, 21(3), 201-218.

7. Thant, K.S. And Tin, H.H.K., 2023. Learning the

Efficient Estimation Techniques for Successful

Software Project Management.

8. Brown, T., & Patel, R. (2024). Future Trends in

.NET Development: Exploring .NET 6 and Beyond.

Software Engineering Advances, 18(2), 67-81.

9. Microsoft. (2020). .NET Core vs .NET Framework:

How to Pick the Right One.

https://dotnet.microsoft.com/platform/compare-

dotnet

10. Stack Overflow. (2020). Stack Overflow architecture

update - Now At 95 Million Page Views A Month.

https://stackoverflow.blog/2020/02/26/stack-

overflow-architecture-update/

https://dotnet.microsoft.com/platform/compare-dotnet
https://dotnet.microsoft.com/platform/compare-dotnet

Phyu P.E. et al., Ind. J. Sci. Res. 2025, 5(1), 01-09

Indian Journal of Science and Research. Vol.5 Issue-1 - 9 - [ISSN 2583-2913]

Research Article

11. Microsoft. (2021). Migrate from ASP.NET to

ASP.NET Core. https://docs.microsoft.com/en-

us/aspnet/core/migration/

12. Dell Technologies. (2020). Dell Technologies IT

Migrates Business-Critical Applications to Windows

Server 2016 with Microsoft SQL Server 2017 and

.NET Core. https://infohub.delltechnologies.com.

https://docs.microsoft.com/en-us/aspnet/core/migration/
https://docs.microsoft.com/en-us/aspnet/core/migration/

